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ABSTRACT

Data collected with a holographic instrument [Holographic Detector for Clouds (HOLODEC)] on

board the High-Performance Instrumented Airborne Platform for Environmental Research Gulfstream-V

(HIAPERGV) aircraft from marine stratocumulus clouds during the Cloud System Evolution in the Trades

(CSET) field project are examined for spatial uniformity. During one flight leg at 1190m altitude, 1816

consecutive holograms were taken, which were approximately 40m apart with individual hologram dimen-

sions of 1.16 cm3 0.68 cm3 12.0 cm andwith droplet concentrations of up to 500 cm23. Unlike earlier studies,

minimally intrusive data processing (e.g., bypassing calculation of number concentrations, binning, and

parametric fitting) is used to test for spatial uniformity of clouds on intra- and interhologram spatial scales

(a few centimeters and 40m, respectively). As a means to test this, measured droplet count fluctuations are

normalized with the expected standard deviation from theoretical Poisson distributions, which signifies

randomness. Despite the absence of trends in the mean concentration, it is found that the null hypothesis of

spatial uniformity on both spatial scales can be rejected with compelling statistical confidence. Monte Carlo

simulations suggest that weak clustering explains this signature. These findings also hold for size-resolved

analysis but with less certainty. Clustering of droplets caused by, for example, entrainment and turbulence,

is size dependent and is likely to influence key processes such as droplet growth and thus cloud lifetime.

1. Introduction

The spatial distribution of droplets in clouds affects

the rate of droplet growth through collision–coalescence

(e.g., Pruppacher and Klett 2010), radiative transfer

through a cloud (e.g.,Matsuda et al. 2012), the competition

for water vapor during condensational growth (e.g.,

Srivastava 1989), and even the rate of the icing process

on aircraft wings (e.g., Jameson and Kostinski 2000).

While some work suggests cloud droplets can be dis-

tributed randomly in space (e.g., Scott 1967; Borrmann

et al. 1993; Chaumat and Brenguier 2001), recent theo-

retical, numerical, and experimental studies argued for

spatial ‘‘clustering’’ of the droplets (e.g., Uhlig et al.

1998; Kostinski and Shaw 2001; Pinsky and Khain 2003;

Chun et al. 2005; Duncan et al. 2005; Bec et al. 2007;

Lehmann et al. 2007; Ayala et al. 2008; Salazar et al.

2008; Saw et al. 2008; Siebert et al. 2010; Bateson and
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Aliseda 2012; Saw et al. 2012a,b; Ireland et al. 2016;

Schmidt et al. 2017; Larsen et al. 2018). This paper

represents another attempt to detect clustering at fine

scales, but via the route of hypothesis testing. Our ex-

perimental strategy is conservative insofar as we pick

the most homogeneous looking yet horizontally exten-

sive and steady stratocumulus clouds as least likely to

exhibit clustering. If droplets even in such mundane

clouds do indeed cluster, current theories regarding

droplet growth and radiative transfer should be suitably

modified (e.g., Sundaram and Collins 1997; Cairns et al.

2000; Reade and Collins 2000; Kostinski 2001; Shaw

et al. 2002; Devenish et al. 2012; Larsen and Clark 2014;

Matsuda et al. 2014; Frankel et al. 2017).

Several methods of quantifying droplet clustering

have been used (e.g., Baker 1992; Borrmann et al. 1993;

Uhlig et al. 1998; Kostinski and Jameson 2000; Chaumat

and Brenguier 2001; Pinsky and Khain 2001; Shaw et al.

2002; Marshak et al. 2005; Baker and Lawson 2010;

Larsen 2012) but uncertainties are difficult to characterize,

especially when using one-dimensional data ranging from

millimeter to kilometer scales to infer three-dimensional

spatial information (e.g., Holtzer and Collins 2002; Larsen

2012; Larsen et al. 2014). Higher-frequency one-

dimensional instruments and therefore a possible reso-

lution of ever-finer spatial scales, and hence smaller

detection volumes, lead to decreasing droplet numbers

and the associated uncertainties grow. Even when ex-

tended to three dimensions, such as with holographic

instruments, averaging over multiple sample volumes

is required because the particle pair correlations are

modest and sampling noise is prevalent (Larsen et al.

2018). Therefore, the results of studies trying to quantify

clustering become hard to judge. Here we focus on sta-

tistical significance of clustering, even if at the expense

of quantifying clustering strength. To that end, we turn

to hypothesis testing of the question: How certain are

we that macroscopically homogeneous-looking, weakly

turbulent stratocumulus are statistically homogeneous?

We use holographic data that provide the positions

and sizes of droplets contained within single, localized

sample volumes. To get at centimeter-scale variability,

the hologram sample volume is sliced in various ways to

test for population inequality of the resulting halves.

Droplet position data are examined via cumulative dis-

tribution functions (CDFs) of counts. This way, binning

associated with probability density functions (PDFs;

or histograms) is avoided. To keep the interpretation

parsimonious, we also avoid assuming any particular

number distributions and keep the data processing

nonparametric. For these reasons, the Kolmogorov–

Smirnov test (Kolmogorov 1933) serves here as a pri-

mary statistical tool because it addresses a well-defined

question: To what level of confidence do two given

CDFs come from the same population? In other words,

the null hypothesis is that the two CDFs are from the

same population. The failure of the null hypothesis is

then specified to some statistical level of significance. In

our context, the fundamental question then becomes,

Are the measured droplet counts per hologram (or,

on a smaller scale, within a hologram) compatible with

what one would expect for random spatial distributions,

that is, statistical uniformity? We examine the data

from three-dimensional in situ measurements of droplet

numbers for the presence of droplet clustering in either

hologram to hologram (outer scale) or between opposite

halves of the same hologram (inner scale) count fluctu-

ations. In this ‘‘minimalist’’ approach, we focus on just

counting drops observed in different measurement vol-

umes and using these counts to examine whether the

droplet counts are consistent with an underlying ho-

mogeneous Poisson process (Poisson distribution at all

spatial scales).

2. Description of the cloud particle data

The data were collected during the Cloud System

Evolution in the Trades (CSET) field project from 1 July

to 15 August 2015, which targeted marine stratocumulus

and trade wind cumulus clouds over the Pacific Ocean

between the coast of California and Hawaii. The mea-

surements were conducted with a variety of instrumenta-

tion on board the NSF/National Center for Atmospheric

Research (NCAR) Gulfstream-V High-Performance

Instrumented Airborne Platform for Environmental

Research (GV HIAPER) aircraft (Earth Observing

Laboratory 2005). Further information on meteorolog-

ical and cloud conditions during CSET is provided by

Albrecht et al. (2019).

Conventional instruments for measuring cloud drop-

let size and spatial distributions, including those based

on light scattering such as the cloud droplet probe

(CDP) and light shadowing such as the two-dimensional

optical array cloud probe (2DC), measure along the flight

path with a small sample area cross section. Obtaining

enough counts to estimate a size distribution requires

relatively long sampling times, and therefore a very long

and thin (essentially one-dimensional) sample volume.

Thus, to examine droplet counts on finer spatial scales,

for example, down to centimeters, holography offers an

opportunity by supplying a spatially localized sample

volume of order 10 cm3 with a wide range of drop sizes

and counts. For each hologram, a pulsed laser provides a

snapshot of all droplet sizes and positions in a local

sample volume by creating overlapping diffraction pat-

terns from each droplet that can be reconstructed in
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postprocessing (Fugal and Shaw 2009). Therefore, spa-

tial scales within holograms can be examined, which are

much smaller than those available for conventional

cloud probes. During CSET, the Holographic Detector

for Clouds (HOLODEC) was one of the instruments

deployed, together with more conventional instruments

(both CDP and 2DC) (Glienke et al. 2017). HOLODEC

has a total sample volume of approximately 13 cm 3
1 cm2, of which we use a subvolume of 1.16 cm 3
0.68 cm 3 12.0 cm for this analysis, and can detect

droplets with diameters of 6mm up to millimeters with

the best detectability above 10mm (Fugal and Shaw

2009; Spuler and Fugal 2011). Holograms were sampled

at 3.3Hz corresponding to 40m for the flight speed of

140m s21. This sampling enables the examination of

variability on intrahologram scales of about 5 cm as

well as the longer interhologram scales of about 40m.

Intrahologram scales are determined by the longest di-

mension of each holographic sample volume, whereas

the interhologram scale is determined by the camera

frame rate and the flight speed.

Seeking steady, homogeneous conditions we chose a

cloud segment with a constant flight altitude in an ex-

tended cloud layer, a rare occurrence in the CSET

dataset. This occurred on flight RF02 on 7 July 2015 when

the aircraft sampled a stratocumulus deck at a constant

altitude of ’1190m between 1716 and 1725 UTC

(36.878–37.208N, 136.28–136.98W) on its way to Hawaii.

The cloud deck extended beyond the chosen time

period, but both altitude changes as well as cloud

edges are excluded here. These 9min of cloud sam-

pling represent 75.4 km of in-cloud data (1816 holo-

grams in total) that visually appears continuous and

reasonably homogeneous (see Fig. 1 and Fig. 2b).

We include all droplets that are larger than 6mm

in diameter, with the largest measured drop be-

ing 162mm.

Details about the examined cloud are shown in Fig. 1,

where Fig. 1a shows the satellite picture of the region as

well as the flight path in white. From this it is evident that

the deck of clouds that was sampled at constant alti-

tude was extensive and continuous with only a few gaps.

FIG. 1. Overview of properties of the cloud. (a) Satellite image at 1730UTC, with the 75.4 kmflight path indicated

by the white line. (b) Size distribution measured by HOLODEC, CDP, and 2DC averaged over the entire length of

the flight segment. (c) Changes along the flight path, with the aircraft altitude at the top and the size distribu-

tion change from hologram to hologram at the bottom. By using the axes as shown in (c), the changes are magnified

and seem bigger than they are. It is evident that the cloud deck is continuous with only few breaks (the gap at

1719:50 UTC is missing data) and few changes over the 75.4 km flight path.
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The size distribution along the flight path (Fig. 1c) does

not vary a lot, so the averaged size distribution (Fig. 1b)

can be seen as representative of the whole cloud. For a

marine environment the mode diameter at about 15mm

indicates relatively small but numerous droplets, but a

few large drops can also be found.

3. Data processing

a. Choice of random variable to test outer- and
inner-scale uniformity

Statistical homogeneity of droplet counts N depends

on spatial scale; for example, visual inspection of Fig. 2b

leads to readily discernible local trends in concentration.

The average number of droplets in a hologram and

the corresponding standard deviation are 2623 6 743,

whereas a Poisson distribution with the same mean

would only have a standard deviation of 51 droplets.

Thus, the cloud droplet numbers do not follow a ho-

mogeneous Poisson distribution over the 75.4 km scale

associated with the entire flight interval. Furthermore,

there are inhomogeneities on scales of at least 40m and

up, but what aboutmuch smaller spatial scales?Are they

ever so distributed when the concentration appears

quite steady over some smaller subsegments? In this

section we construct a random variable d that will allow

FIG. 2. (a) Schematic of HOLODEC data collection and analysis. To calculate

dout 5 (Ni 2Ni11)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni 1Ni11

p
, consecutive holograms (;40m apart) are compared pairwise.

For dz 5NL 2NR/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL 1NR

p
, counts for the two halves of the same hologram (defined by the

orange plane) are used; the same process holds for dx (defined by the purple plane) and for

dy (not shown). (b) Droplet count per hologram vs distance. All holograms are of equal sample

volume: 1.16 cm 3 0.68 cm 3 13.0 cm. The aircraft average speed of 138.5m s21 yields an

interhologram distance of 41.5m and the total length of about 75.4 km. The box-and-whisker

plot on the right side denotes mean count (2623; orange line), the 25th and 75th percentiles

(2262 and 3107, respectively; blue box), and the 0.35th and 99.65th percentiles (whiskers).
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us to use the Kolmogorov–Smirnov (K-S) test at a sub–

hologram scale.

To apply the (one-sample) K-S test, the empirically

observed CDF of some variable is compared to the

theoretical CDF proposed to describe the data. The

absolute maximum of the difference is used to judge

the likelihood that the empirical data come from the

theoretical CDF (see p. 476 of Kendall and Stuart 1979).

To that end, let the number of cloud drops in sample

volume A be NA and in sample volume B be NB, with

A and B being two neighboring volumes such as two

neighboring halves of an individual hologram. The

measured distribution of DAB 5 NA 2 NB can then be

compared to one drawn from two identical Poisson

distributions (the perfectly random case). In passing, we

note that the difference between the two Poisson-

distributed random variables follows the Skellam dis-

tribution (Skellam 1946). In the absence of clustering,

the two Poisson variables have the same mean, yielding

for the distribution of the difference mean and skewness

of zero and variance of 2m (where m is the mean for each

of the Poisson-distributed random variables NA and

NB). Hence, we introduce the random variable d:

d5
D
ABffiffiffiffiffiffi
2m

p 5
N

A
2N

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

A
1N

B

p , (1)

where for real data the sample mean m 5 (NA 1 NB)/2

is used in place of the true mean.

The d approach can be applied at any spatial scale.

For example, exploring homogeneity on 40m scales,

involves droplet counts in consecutive holograms:Ni and

Ni11. In Eq. (1) we therefore use Ni andNi11 for NA and

NB, respectively, thereby allowing us to compute a

quantity we call dout (for ‘‘outer scale’’ variability).

The d metric is crucial at subhologram scales where

uniformity within a single hologram is in question. In

this case, A and B are two halves of one hologram and

the quantity examined is the difference in their droplet

counts. Two possible ways of partitioning a hologram in

halves are illustrated in Fig. 2a. A three-dimensional

Cartesian coordinate system can be aligned parallel to

the symmetry axes of the holographic sample volume,

with the shorter dimensions running parallel to the x and

y axes, and the long axis running along the z direction,

centered at the origin. To explore the subhologram

scales, we replace A and B in Eq. (1) with L and R with

NL corresponding to the number of drops with z . 0

(x . 0) and NR corresponding to the number of drops

with z , 0 (x , 0) to define dz (dx). Thus, in the left

picture in Fig. 2a, we have marked the orange-square as

dividing the hologram along the plane z 5 0. Similarly,

the center picture shows the same hologram divided in

half by the purple rectangle along the plane x 5 0.

Additionally, it is also possible to slice the hologram in

half along the plane y 5 0, yielding dy.

Because there is a gradual decrease in instrumental

sensitivity with increasing z (Fugal and Shaw 2009), the

division point for dz was moved slightly closer to the

image plane than the center of the sample volume, so

that—when averaging over all holograms in the flight

interval—all detected particles were equally likely to be

found in either half of the hologram. For the specific

flight examined here, this meant moving the dividing

surface defining dz about 5mm closer to the image plane

of the hologram to ensure this equal probability (com-

pared to the total length of 120mm along the z dimen-

sion). The dividing surface placement was determined

from the data, and may therefore change if a different

droplet size range or a different dataset are considered.

Similarly, the dividing planes for the x and y directions

were shifted by 0.12 and 0.02mm, respectively, com-

pared to a total dimension of about 1 cm.

The importance of measuring droplet count differ-

ences in units of standard deviations d is illustrated in

Fig. 3. The top panel shows a hologram with one-half

empty (a remarkably sharp cloud edge). The total

number of droplets is 131. In contrast, the bottom ho-

logram contains droplets seemingly uniformly distrib-

uted throughout the entire sample volume, 2041 in total.

FIG. 3. Two examples of holograms showing very different

conditions of droplet distributions. Both holograms have similar

values for DN (131 and 151), but due to the different total numbers

(top) N1 5 131 and (bottom) N2 5 2041, the values for d are very

different (11.4 and 3.3). Furthermore, it is evident that cloud edges

were sampled during the flight, although this is the only holo-

gram from all 1816 examined holograms with no cloud droplets in

one-half.
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The droplet count difference between the two halves is

DAB5 151, similar to the difference in the top hologram

DAB 5 131. However, one hologram shows a clear

nonuniformity in droplet positions whereas the other

does not, as seen at once in terms of d: the top hologram

d5 131/
ffiffiffiffiffiffiffiffi
131

p
5 11:4 versus the bottom hologram value

of d5 151/
ffiffiffiffiffiffiffiffiffiffi
2041

p
5 3:3. Note that the top hologram in

Fig. 3 is the sole example from the 1816 holograms with

an empty half.

Once the empirical distributions of dout, dz, dx, and dy
are obtained from the data, the analysis inspired by the

K-S test can be applied to determine whether these

empirical distributions are consistent with perfect ran-

domness. The one-sample K-S test requires comparison

to a theoretical d distribution, which is discussed next.

b. Monte Carlo simulations supply the reference for
the K-S test

Ideally, one would prefer to use a theoretical refer-

ence for the one-sample K-S test. However, the local

mean is a random variable itself as it varies unpredictably

from hologram to hologram. At first glance, the Skellam

variable, scaled as in Eq. (1), appears attractive be-

cause its first three moments are independent of m 5
(NA 1 NB)/2. However, the kurtosis does have a weak

m dependence. More importantly, the cumulative dis-

tribution of NA 2 NB, scaled by (2m)1/2, still displays

a subtle m dependence via the variable step height as

illustrated in Fig. 4. Therefore, we resort to binomial

Monte Carlo trials to supply the unclustered reference,

denoted dmc, to compare to the measured dout, dz, dx,

and dy as discussed next.

To compute dmc, the total observed number of drop-

lets in two neighboring holographic volumes is randomly

redistributed so that the two volumes still contain the

same total number of droplets, but each droplet has an

equal probability of being assigned to each volume (e.g.,

left half vs right half of the simulated hologram). In

other words, Bernoulli trials for the binomial distribu-

tion with p 5 1/2 and n equal to the total number of

droplets in each hologram. Then the redistributed syn-

thetic data are used to generate a distribution of dmc

values for a full ‘‘flight’’ of 1816 holograms. This pro-

cess was repeated a total of 1000 times, so that there are

1000 synthetic datasets as well as the one observational

dataset. This number seems large enough, since the total

spread of dmc does not increase appreciably if 105 data-

sets are generated. Several refinements to the Monte

Carlo simulations are described in section 5.

The method for obtaining the simulated results allows

for gradual changes in droplet counts over multiple ho-

lograms but locally—within single holograms—explicitly

forces perfect spatial randomness. Based on this, dmc is

the distribution of d expected if the data were consistent

with this local spatial randomness. In the following, the

simulated dmc will be compared to the measured values of

d, to decide via the K-S test whether the observations are

consistentwith the randomness hypothesis at spatial scales

of ;40m (dout), ;5cm (dz), and ;0.5 cm (dx and dy).

This test compares two distributions based on the

maximum absolute difference h between the respective

CDFs. The distribution of hmc obtained viaMonte Carlo

is used to determine the likelihood and thereby statis-

tical significance of the observed h. Large h would then

indicate statistically significant deviations from perfect

randomness. Note that the magnitude of h is, in this

framework, a measure of statistical significance rather

than the strength of droplet clustering.

4. Results

a. Statistical significance of the evidence for droplet
clustering

Droplet counts per hologram are shown in Fig. 2b,

with the interhologramdistance of about 40m.A total of

1816 holograms were collected along the 75.4 km of

flight path, with observed droplet counts between 0 and

4410, and the global average of 2623 6 743 (standard

deviation). As expected for a random count (nonnegative

random variable), the excursions below the mean are

more frequent than those above.

FIG. 4. A comparison between CDFs of the Skellam variable,

scaled as in Eq. (1). Each curve comes from the numerical simu-

lation of 106 differences between pairs of Poisson distribu-

tions; the black curve shows the CDF of (NA 2NB)/
ffiffiffiffiffiffiffiffi
2m1

p
, with

NA 5NB 5m1 5 103, and the red curve shows the CDF of

(NA 2NB)/
ffiffiffiffiffiffiffiffi
2m2

p
, with NA 5NB 5m2 5 104. Despite seemingly

excellent agreement, the fundamental discreteness of the distri-

butions due to m, ‘ (see inset staircase) causes the Kolmogorov–

Smirnov test to detect that these two CDFs do not result from the

same underlying probability distribution.
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Is the hologram to hologram variability on 40m scales

seen in Fig. 2 comparable to expectations for spatial

homogeneity? To that end, dout is compared to dout,mc

generated from the Monte Carlo simulation of the same

experimental conditions, as described in section 3b.

Figure 5 shows the two distributions obtained for dout
and dout,mc both as PDFs (top panel) and CDFs (bottom

panel). The envelope of dout,mc CDFs is also shown by

the light-red shading in the bottom panel so that the

range of variability in the Monte Carlo trials can be

appreciated. It is obvious from the plot that the distri-

butions for dout and dout,mc are far apart. The wider PDF

of the observations compared to the reference simula-

tion signifies larger variability at this scale than random

fluctuations can explain. The range for themeasured dout
is275 to 72, whereas dout,mc approaches zero probability

for jdj values of greater than 5. The largest distance

between the two CDFs, the maximum K-S distance h,

occurs at the vertical blue dashed line and indicates a

difference in probability of 0.3—vastly larger than the

spread of the 1000 Monte Carlo realizations. This shows

that hologram droplet count fluctuations are much

more pronounced than random fluctuations at the

’40m scale.

Coming to our central result, we now consider intra-

hologram variability (centimeter scale). Figure 6 shows

the distributions of the mean Monte Carlo dz,mc (dark

green line) and the observed dz. There are apparent

differences, with the measured distributions of all

d broader than the Monte Carlo (Fig. 6, top panel). To

see whether these differences are outside the sampling

variability (spread), we include the envelope of the ex-

tremes of the 1000Monte Carlo simulations (light-green

shading in the top panel of Fig. 6). The observations

are still outside the envelope of the Monte Carlo

simulations.

In accordance with the K-S test, but supplying the

measure of significance directly from the Monte Carlo

results, we compile a histogram of hmc for each of the

1000 Monte Carlo trials compared to the CDF of the

average Monte Carlo result. As shown in the bottom

panel of Fig. 6, the histogram serves as an empirical

estimate of confidence bounds: the bounds for 75%,

95%, 99%, and 99.9% significance are shown by vertical

blue lines. The maximum difference h between the dz
CDF and the mean Monte Carlo CDF is marked by the

vertical red dashed line at dz 5 0.13. Therefore, one

concludes with some confidence that the droplets cluster

at the local-hologram ’5 cm scale.

FIG. 5. (top) PDFs and (bottom) CDFs for observed interholo-

gram dout (see Fig. 2) for all droplets.10mm (orange line with gray

shading below) vs the fiducial uniform Monte Carlo (red line),

simulating the experiment. The range of observed values of dout on

this 40m scale far exceeds the range for the uniform dout,mc in

the top panel, thereby detecting nonuniformities with statisti-

cal significance. The dashed blue line in the bottom panel marks

d 521.69, where the maximum K-S distance h (solid line) occurs.

At d521.69 the respective values for the cumulative probabilities

are 0.05 and 0.35. Thus, the K-S test rejects the null hypothesis of a

single underlying distribution with compelling confidence.

FIG. 6. (top) Observed CDF for dz (black) and an envelope

of 1000 simulated statistically uniform CDFs and their mean

(green). The CDF of the observations is clearly outside the en-

velope of the simulations. The inset zooms in on the maxi-

mum distance between dz and the mean of Monte Carlo CDFs.

(bottom) The black curve is a histogram of the largest difference

between trials and the expected value of dmc. Blue vertical lines

mark empirical uncertainty: 990 of the 1000 Monte Carlo trials

had a maximum deviation from the mean CDF , 0.04, yielding a

99% confidence bound. Only dy lies within this confidence bound.

Thus, centimeter-scale CDFs of neither dz nor dx are compati-

ble with the null hypothesis of statistical uniformity to 99.9%

statistical significance. The same is true for dy, but only to 95%

statistical significance.
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Figure 6 also shows the CDFs and maximum devia-

tions h from Monte Carlo for dx and dy. These corre-

spond to slicing the volume along x and y planes, and

therefore bring the minimum scale down to’5mm. The

CDFs for both dx and dy are just outside the envelope of

Monte Carlo results (see inset). Nonuniformity within

the x-sliced registers well beyond the 99.9% level (Fig. 6,

bottom panel), whereas within the y-sliced volumes is

between the 95% and 99% confidence levels and is

therefore less certain. Thus, although unlikely, the shape

of the dy CDF could be explained by random fluctua-

tions of droplet numbers.

Before concluding that clustering is real, however, we

must further examine all plausible instrumental sources

of variances that might even slightly alter the shape of

theMonte Carlo CDF, and therefore the K-S distance h.

Also, the variance of the distribution of hmc in the bot-

tom panel of Fig. 6 may increase. Either effect might

decrease the significance that clustering is detected.

To eliminate the latter possibility, we thoroughly ex-

plore different approaches for accounting for known

instrumental biases such as edge effects, position biases

and changing detection probability within the sample

volume, even with respect to different size ranges. These

do not drastically alter our conclusions, but for com-

pleteness are described in section 5.

b. Significance of clustering and droplet size

Thus far we have examined droplet spatial variabil-

ity independent of the sizes of individual droplets.

However, there are reasons to suspect differences in

variability for various droplet size ranges. For example,

finite particle inertia, gravitational settling and turbu-

lence effects can lead to spatial correlations (Reade and

Collins 2000; Bec et al. 2007; Saw et al. 2008, 2012b; Bec

et al. 2014; Gustavsson et al. 2014; Ireland et al. 2016).

Thus, we extend our analysis to examine the significance

of clustering in different size ranges.

The analysis proceeds as before, that is, the sample

volume is divided into two halves to calculate a value for

d, but this time for four different size ranges, 6–12.5,

12.5–14.6, 14.6–16.4, and .16.4mm. The size ranges

were chosen such that the number of droplets in each of

the four intervals was constant; that is, one-fourth of all

droplets were in each size range. This allows us to use

one rescaled Monte Carlo experiment for determining

(N dependent) significance. For each size range we di-

vide the sample volume such that the median of dz
equals 0 when averaging over the 1816 holograms. This

shifts the dividing plane (colored orange in Fig. 2) by at

most 3mm in each direction. Then for each hologram a

value of d was calculated and compared to the Monte

Carlo simulation as before.

Figure 7 shows the maximum absolute distances be-

tween the CDFs of dz and dz,mc for each of the four size

ranges. The maximum observed deviations h decrease

with increasing droplet size, which indicates increasing

confidence toward the null hypothesis of perfect ran-

domness. This indicates lower confidence for clustering

for larger droplets. However, when examining all four

deviations individually to their associated Monte Carlo

distributions of hmc the figure still shows clustering with

compelling confidence. Observe that larger particles

show lower h than smaller particles.

One can see from Figs. 6 and 7 the crucial element in

rejecting the null hypothesis of perfect randomness is

the shape and envelope of Monte Carlo CDFs (of dmc).

These yield both the magnitude of h and the width of

the Monte Carlo distribution of hmc. Should this latter

distribution broaden and in particular develop a fatter

right tail, the statistical significance can drop drastically.

From a different perspective, the Poisson test of perfect

randomness (variance equal to mean count) can produce

spurious results because of unaccounted sources of vari-

ance. This emphasis on the fidelity of such fiduciary use

of Monte Carlo simulations prompted us to examine the

measurement process more closely in the next section.

5. Possible instrumental sources of variance

Are there unidentified sources of variance in the in-

strument or sampling strategy that would cause reduced

FIG. 7. Shown are five PDFs of hmc as indicated by the droplet

diameter ranges in the legend. The black PDF is the same as that

shown in Fig. 6. The blue, red, yellow, and purple vertical lines mark

the observed h of the four diameter categories. Data are for the z

partition of the hologram, i.e., dz. The green vertical line delineates

the range of 99% significance for each of the four size ranges, and the

solid blue line is the 99% confidence bound from Fig. 6. Statistical

significance is compelling in all four cases individually but is observed

to decrease with increasing droplet diameter.
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confidence in the significance testing for homogeneity?

Here we describe our attempts to account for instru-

mental imperfections that could manifest as apparent

clustering. To that end, we incorporate possibly hidden

sources of instrumental variability into more sophis-

ticated MC simulations, described next. Additional

tests such as detected nonzero skewness in the distri-

butions of D, are also described and confidence bounds

scrutinized.

a. Enhanced Monte Carlo simulations

Our explicit goal here is to simulate the measurement

process faithfully. Each of the simulations had some

general properties in common:

d Simulations draw from counts of the 1816 holograms,

in order to most closely match the dataset being

analyzed (except the last method, which considers

additional droplet position information from the full

research flight).
d Simulations have the same hologram-to-hologram

sampling variability: the ith hologram in the simula-

tion contains exactly as many cloud droplets as the ith

hologram in the data.
d Simulations place droplets within the same 1.16 cm 3
0.68 cm 3 12.0 cm parallelepiped of the HOLODEC

sample volume.
d Simulations involved halving the hologram along x–y,

x–z, and/or y–z planes to allow for the computation of

Dz and dz, Dy and dy, and Dx, and dx, respectively.

The simplest simulation, described in section 3b,

placed particles in the appropriate octant perfectly

randomly; a numerical ‘‘coin flip’’ assigned each particle

into high or low x values, high or low y values, and high

or low z values independently and with equal proba-

bility. After completing this simulation for 1000 simu-

lated flights, the observed distributions of Dx, Dy, Dz, dx,

dy, and dz were compared to the simulated values.

When these simulations failed to show similar

distribution functions for d and D as the observed

data, attempts were made to incorporate more real-

istic boundary conditions, such as various shapes for the

sample volume and dividing lines between the two

‘‘halves’’ of the hologram. As part of the analysis de-

scribed in section 2, the dividing plane has been shifted

by distances on the order of millimeters from the

physical midpoint of the sample volume, to the location

resulting in equal probability of detecting the same

number of droplets in both halves. Careful scrutiny

reveals that for holograms with very different droplet

numbers, this median droplet count position varies;

that is, if we only examine the holograms with lower

or higher than average droplet numbers, the dividing

plane is slightly to one side or the other of the average

dividing plane. To check how this might influence the

conclusions, we ran a set of Monte Carlo simulations in

which holograms with low droplet numbers were cal-

culated with a higher probability of finding droplets

within the first half than holograms containing high

droplet numbers. This, of course, influences the results

for the calculated dz,mc but causes minimal changes

to the distribution of hmc and does not account for dif-

ferences between the observations and the Monte Carlo

results.

In attempt to account for the possible corrupting in-

fluence of variable instrument sensitivity (meaning that

the volume has regions in which droplets are detected

with slightly higher or lower probability) another sim-

ulation method was developed. In this method (which

we have dubbed the ‘‘enhanced Monte Carlo’’) the

4 763 670 recorded droplet positions within the sample

volume make up a ‘‘library’’ of locations. Simulations

then draw from this library to place cloud droplets in

each hologram. For each hologram in each of 600 sim-

ulated flights, the observed number of cloud droplets

were placed by randomly selecting the necessary num-

ber of these 4 763 670 locations. Then, holograms were

again sliced into halves and distributions ofDx,Dy,Dz, dx,

dy, and dz were compared with the measured observa-

tions. As can be seen in Fig. 8, there is little change in

moving from an idealized perfectly random Monte

Carlo simulation to this ‘‘enhanced’’ Monte Carlo.

To push further, we used the measured droplet posi-

tions recorded in the full research flight as a library with

14 802 holograms (i.e., from more than just the 1816

holograms used in this paper), from which the droplets

for the simulation are randomly drawn. This method

accounts for locations in the holograms where droplets

are more frequently detected than the ideal assumption

of uniform detection probability. Clustering and irreg-

ularities due to these highly populated areas are thereby

included in theMonte Carlo simulation. As before, each

simulated hologram has the same number of droplets as

the real measured hologram. The flight segment of RF02

containing 1816 holograms is simulated 600 times (fewer

than the 1000 used in section 3 due to computational

expense, but still adequate for smooth Monte Carlo

distributions). Similar to the observations, the location

of the dividing line for the calculation of d is determined

in such a way that half of all droplets, averaged over the

1816 holograms, are in each half of the hologram. From

this simulation, values for d can be determined and

thus a distribution for each realization of the flight seg-

ment. Still, the comparison between the simplest and the

most detailed Monte Carlo simulations shows that they

yield very similar results; the obtained distributions of
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d are so close that they are barely distinguishable. The

largest distance h between two CDFs is 0.01, which is

comparable to the smallest values for h between dif-

ferent Monte Carlo trials of one simulation.

b. Skewness in droplet counts

The measurement process can be imperfect in ways

not affecting variance but symmetry instead. For ex-

ample, the right half of a hologram is just as ‘‘good’’ as

the left, requiring that the skewness of theDLR5NL2NR

distribution should be zero to within tolerance. So it was

with concern that we noticed a skewness in D distribu-

tions for both x and z of21.1 and 0.6, respectively, much

greater than 0.2 the maximum skewness in the Monte

Carlo simulations (but y is within MC bounds, all for

1000 realizations). What is the source of this skewness,

and would removing the source make the clustering

disappear? To that end, we looked at each of the 1816

holograms individually and discovered that just a few

contribute disproportionately to skewness. These turn

out to be contaminated by rare, shattered drizzle drops:

in such holograms chains of drop fragments appear on

one side of the hologram sample volume, close to the

instrument housing. They are the outliers in the left tail

of the histogram of D5NL2NR shown in the top panel

of Fig. 9. The x-partition data are shown because it has

the largest magnitude of skewness. Recall that the x

dimension is perpendicular to the flight direction, par-

titioning the hologram into top and bottom halves (cf.

top panel of Fig. 2). All holograms with jDj . 200,

present exclusively in the left tail of the histogram in the

top panel of Fig. 9 have been identified as including

shattering events. Conversely, no obvious shattering

events have been found in the remaining (vast majority)

holograms. The 18 culprit holograms do not occur ran-

domly but rather nearly consecutively, next to a burst of

empty holograms in a cloud hole. A few occur new the

very beginning and end of the time series (cloud edges).

Exclusively negative D for all culprit holograms implies

that shattering events occur exclusively in the bottom

half of the hologram, probably due to a lack of top–

bottom symmetry in the flow pattern.

Before removal of the 18 holograms, the average

skewness of the Dx distribution is 21.1 and after the

FIG. 9. Removal of holograms with a large jNL 2NRj for the x
dimension illustrated. These are exclusively holograms influ-

enced by shattered rain. (top) Histogram of the difference in

number of droplets in each half for x dimension. Holograms with

NL 2 NR , 2200 are marked as outliers. (bottom) CDFs of dx for

all holograms and when outliers are removed for both the observa-

tions and the Monte Carlo simulation. The two simulations are very

close to each other. The inset shows the differences more clearly.

FIG. 8. As in Fig. 6, (bottom) but accounting for slight inho-

mogeneities in instrument detection probability. This shows the

largest difference between the simulated (black) and observed

(dashed red vertical line) CDFs of d and the average CDF of

d among the 600 simulated flights using the ‘‘enhanced Monte

Carlo’’ simulation as described in section 5. The dashed blue lines

show the 99th-percentile significance obtained from the Monte

Carlo simulations. The figure shows results for (top) dx, (middle)

dy, and (bottom) dz, with each histogram corresponding to

600 enhanced Monte Carlo simulations. The observed h exceeds

the 99th percentile for all three partitions, therefore implying

statistically significant clustering.
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removal it is 20.19, within the 0.2 range of sampling

variability for the 1000 Monte Carlo realizations. Do

these rare shattering events affect our clustering con-

clusions? The bottom panel of Fig. 9 shows that when

we remove these outlier holograms the shape of the

CDF changes slightly but perceptibly. How does this

shift toward the Monte Carlo CDF affect the K-S

distance h and the associated level of significance?

Figure 10 answers the question, showing the shift of

h for dx, dy, and dz toward lower but still compelling

significance. As mentioned, the bars in Fig. 10 shift

to the left because of the slight change in CDF shape

toward MC, upon removal of the outliers. As an al-

ternative to outlier removal, we could leave the data as

is and incorporate drop shattering events into the

Monte Carlo simulation itself, for example, via doubly

stochastic Poisson process as illustrated for instance in

Fig. 1 of Kostinski and Jameson (2000). This would

indeed produce an extravariance due to the shattering-

caused apparent clustering as such spatial correlations

are ‘‘diluted’’ in our current ensemble Monte Carlo.

However, the observed probability of (rare) shattering

is subject to huge sampling variability, so our conser-

vative (jDxj . 200) removal of outliers was deemed

more reliable. Thus, the null hypothesis of no clustering

is again rejected.

After the removal of the 18 holograms that had

identified shattering events, the two CDFs for x and y

still show differences despite their similar dimensions.

This could be due to further shattering, since our re-

moval was rather conservative. However, it is reason-

able to consider y as free from shattering due to its

different orientation. Still, y shows hints of clustering.

6. Concluding remarks

Recently, scale-dependent cloud droplet clustering in

homogeneous stratocumulus clouds was detected us-

ing the three-dimensional spatial statistics of cloud

droplet positions measured with a holographic instru-

ment (Larsen et al. 2018). The emphasis there was on

scale dependence, using the radial distribution function

(3D version of pair correlation function). In contrast, in

this paper we are not concerned with continuous scale

dependence but instead focus on a statistical significance

of clustering at a fixed (intrahologram) scale. To that

end, we employ the Kolmogorov–Smirnov test because

of minimal processing and manipulation of the data

(droplet counts). In particular, no data binning is re-

quired (cumulative distributions are used) and the sig-

nificance test is invariant with respect to the underlying

distribution. Data analysis is exceedingly simple as well:

each hologram volume is halved and droplet counts for

the two partitions are compared. Not much else is in-

volved. Another virtue of this approach is how it exposes

instrumental imperfections.We have partitioned sample

volumes along the x, y, and z directions; and divided by

droplet size; ultimately, we find that no matter which

way we slice the data, the null hypothesis of perfect

randomness in spatial distributions of droplets is re-

jected with compelling confidence. This complements

the findings of the earlier study (Larsen et al. 2018).

How localized is the clustering detected by the K-S

test used in this paper? Specifically, is it possible that

large-scale gradients could contribute to the centimeter-

scale K-S signature? Taking the perspective that fluc-

tuations are deterministic spatial gradients, we can ask,

do 40m spatial gradients affect clustering on centimeter

scale quantitatively? To that end, to be conservative,

we pick the largest change of counts present in our data:

0–4000 within the span of 40m. This is roughly 100

droplets per meter or 1 droplet per centimeter. The

observed number fluctuations on centimeter scale as

well as Poisson fluctuations both far exceed this. We,

therefore, conclude, that the existence of gradients on

the 40m scale negligibly affect either the presence or

absence of clustering. Conversely, we can ask: at what

spatial scales would a 0–4000 fluctuation cause Poisson-

comparable count fluctuations on the centimeter scale?

FIG. 10. Removing holograms with a high difference inNR 2NL

for the x dimension, i.e., holograms influenced by shattered

rain, reduces the maximum distances for all three dimensions.

Nevertheless, the results indicate that the variability is still larger

than expected for randomness for both x and z. (top) Observed

CDF for dz (black) and 1000 simulated statistically uniform CDFs

without outlier holograms. (bottom)Maximumdeviations from the

mean CDF for theMonte Carlo trials, their confidence bounds, and

the observations. The green shading indicates the shift when out-

liers are removed; in all cases this will bring the observations in

closer agreement with the Monte Carlo trials.
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Assuming the standard deviation scales as the mean

count, and using the Poisson square root rule, yields

;60 cm, thus confirming our conclusion that the K-S

method is reasonably localized in scale sensitivity.

Statistically significant clustering at centimeter scales

(dz, dx, and dy) is consistent with turbulent mixing in

marine stratocumulus clouds. However, in contrast with

the length scale of ;1 cm and below in Larsen et al.

(2018), the present ;5 cm scale is not likely to involve

droplet inertia as a cause of clustering because the tur-

bulent energy dissipation rates are typically rather low

in such clouds. Clustering from entrainment and sub-

sequent mixing of clear and cloudy air is the more

likely cause.

Of course, statistical hypothesis testing never proves a

particular physical mechanism, but rather rejects a null

hypothesis with some confidence. Therefore, it is im-

possible to rule out the possibility that there is some

unidentified instrumental source of variance not cap-

tured in the simulations, that artificially generates the

observed difference between measured and simulated

d and that is not due to natural inhomogeneity in particle

spatial distribution. This is in keeping with the ‘‘Anna

Karenina principle’’ of statistics, that in hypothesis

testing there are many ways the null hypothesis can be

rejected (e.g., due to various natural or instrument-

induced causes), but only one way it can be satisfied.

Based on our analysis, and accounting for all plausible

instrumental imperfections, we conclude that clus-

tering on centimeter scales is indeed present. It is

worth noting that the approach presented here can

also be used for detection of instrumental imperfec-

tions such as spatially variable detection probabil-

ity throughout the sample volume and other artifacts.

For example, during application of the described

test we found a nonuniform detection of droplets

throughout the sample volume but this turned out to

be negligible.

Finally, an investigation of size dependence shows

that there is higher confidence for clustering of pro-

gressively smaller droplets. This intriguing result may

have implications for our understanding of spatial clus-

tering mechanisms. For example, theory and laboratory

measurements suggest that nonsettling droplets in tur-

bulent flow tend to become more clustered with in-

creasing particle size (for Stokes numbers less than

unity), but when gravitational settling effects become

significant, the trends can be reversed (Bec et al. 2014;

Gustavsson et al. 2014; Ireland et al. 2016). Indeed,

for the droplet sizes considered here, and the weak

turbulence conditions that prevail in stratocumulus

clouds, it is likely that particles are in the sedimentation-

dominated regime (Siebert et al. 2010, 2015).
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